
333333333336
Different Screen
Size, Different
Design
It’s no secret or surprise that the variety of ways people

browse the web is increasing. People may view your web pages

on widescreen TVs, desktop computers, netbooks, mobile

phones—even a refrigerator. While you can’t make a site that

looks identical on every single device at every screen size

and text size, you can make a site that adapts to the users’

settings so that it looks good and works well in the screen space

available. In this chapter, you’ll learn how to use CSS3 media

queries to tailor a web page’s design to various screen sizes on

the fly, making your web pages more dynamic, responsive,

and usable.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 6: Di fferent Screen Size, Different Design206

What You’ll Learn

We’ll be restyling an entire page layout to work with different screen sizes and devices using these

pieces of CSS3:

�� Media queries to apply styles selectively based on the visitor’s device properties

�� Multi-columns to flow text into side-by-side columns

The Base Page
Figure 6.1 shows a layout for a fictional bakery. The layout is liquid
(also known as fluid) so that it adjusts to the width of the browser
window, making it work at a variety of screen sizes without generating
horizontal scrollbars or causing elements to overlap. But it certainly
looks better at some screen sizes than at others. On very wide or very
narrow windows, the design is still usable and looks OK, but it’s not as
attractive as it is within the 800- to 1200-pixel range (Figure 6.2).

F i g u r e 6 .1

The fictional Little Pea
Bakery home page, as
seen in a browser win-
dow that’s 1024 pixels
wide.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

The Base Page 207

F i g u r e 6 . 2 The design looks OK, but not great, in very narrow and
very wide windows.

In Chapter 2 of my book Flexible Web Design: Creating Liquid and Elastic
Layouts with CSS, I show that flexible layouts don’t have to be plain or
ugly to work at a variety of screen sizes. You can build pages with flex-
ible images, reasonable text-line lengths, and creative use of space to
make sure the design works well at a large range of widths. But I don’t
deny that it’s impossible to create a design that looks every bit as good
condensed into 300 pixels as it does stretched out to 2000 pixels. I’ve
always advocated using min-width and max-width, as well as separate
styles for mobile devices, in order to get around this problem.

Since the writing of Flexible Web Design in 2008, however, a new tool
for creating layouts that work at any ridiculously large range of sizes
you want has gained good browser support: media queries.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 6: Di fferent Screen Size, Different Design208

What are Media Queries?
Media queries let you customize styles based on the characteristics of
the user’s device or display, such as the viewport width, whether it’s in
portrait or landscape mode, or whether it shows color. This is different
from the media types, such as screen and print, that you can specify
for your style sheets in CSS 2.1. With media queries, you specify not
only the media type to which you want to apply a set of styles, but also
one or more characteristics of the user’s display. Here’s an example:

@media screen and (max-width: 600px) {
	 body {
		 font-size: 88%;
	 }
	 #content-main {
		 float: none;
		 width: 100%;
	 }
}

The above media query starts with the @media rule, and then speci-
fies a media type (in this case, screen). Next there’s the word and,
followed by the characteristic we want to match against, called the
media feature. This particular media feature, max-width: 600px, tells
the browser that the styles for this media query, which are contained
within a set of curly brackets for the media query as a whole, should
apply only up to a maximum width of 600 pixels. If the viewport
width exceeds 600 pixels, the browser will ignore the styles inside
the media query.

This media query can be dropped right into your main style sheet,
keeping all your styles in one place for easy debugging and mainte-
nance, as well as saving an HTTP request. If you want, however, you
can apply media queries to separate style sheets on the link element
or @import rule:

@import url(narrow.css) only screen and (max-width:600px);

<link rel=”stylesheet” media=”only screen and
¬ (max-width:600px)” href=”narrow.css”>

Here, I’ve added the keyword only in front of the media type screen
to keep some older browsers that don’t understand media queries
from downloading and applying the style sheets universally. Most
non-supporting browsers will not use the sheet anyway, but this is

N ot e : All the available

media features are listed

and described fully at

www.w3.org/TR/css3-

mediaqueries/#media1.

The ones you’ll probably

need most often are

min-width, max-width,

min-device-width,

max-device-width,

orientation (portrait

or landscape), color,

and resolution.

T i p : If you want to use

the media type all in

your media query, you

can make your CSS

shorter by leaving out

the media type entirely,

as well as the word

and, like so: @media

(max-width:600px).

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Changing the Layout for Large Screens 209

extra insurance. The only keyword isn’t needed when you place the
@media rule directly in your main style sheet.

Whether embedded with other CSS or in separate sheets, media que-
ries are a powerful new tool in web design. We can use them to cus-
tomize and fine-tune our styles to each user’s device and settings with
more precision than we’ve ever been able to before. This can improve
not only the attractiveness of our web pages, but also their usability.
We can change text line lengths, leading, and font sizes to make sure
the text remains readable at different widths. We can rearrange col-
umns and resize or remove images on small screens to make better use
of the space and let users get right to the content they want. We can
make links larger on touch-screen mobile devices to make them easier
for people to activate with their fingers. And we can do all this without
having to involve complicated scripting for browser sniffing, feature
detection, or style-sheet switching. You just continue to use the CSS
that you already know to write different styles for different scenarios.

Let’s use media queries now on our example page to customize the
design to large screens, small screens, and mobile devices.

Changing the Layout
for Large Screens
We’ll start with the styles for large screens. Download the exercise
files for this chapter at www.stunningcss3.com, and open media-
queries_start.html in your code editor. Its CSS is contained in a style
element in the head of the page.

The design of this example page starts looking a bit stretched out at
around 1200 pixels wide, so let’s add a media query that will apply
only when the window is 1200 or more pixels wide. Add the following
CSS after all the existing styles in the style element in the head:

@media screen and (min-width: 1200px) {
}

This media query has to be at the end of the styles so that it will over-
ride the earlier styles, using the cascade of CSS. It tells the browser
that we want the styles within this media query to apply to screen
media types, but only if the user’s viewport width is 1200 pixels at a

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 6: Di fferent Screen Size, Different Design210

minimum. Of course, right now there are no styles in the media query,
just empty brackets waiting to be filled. Since we have so much extra
space in viewports over 1200 pixels wide, how about we fill those
brackets with styles to change the layout from two columns to three?

To do this, we’ll change the positioning of the navigation div, as well
as the widths and margins of the two content divs. Here are the cur-
rent styles of these three divs, outside the media query:

#nav-main {
	 float: right;
	 margin: 40px 0 0 0;
}
#content-main {
	 overflow: hidden;
	 float: left;
	 width: 70%;
	 margin-bottom: 40px;
}
#content-secondary {
	 float: right;
	 width: 25%;
	 margin-bottom: 40px;
}

Modify these styles for viewports over 1200 pixels wide by adding new
rules within the media query you just created:

@media screen and (min-width: 1200px) {
	 #nav-main {
		 position: fixed;
		 top: 136px;
		 width: 13%;
		 margin: 0;
	 }
	 #content-main {
		 width: 58%;
		 margin-left: 18%;
	 }
	 #content-secondary { width: 20%; }
}

This positions the navigation div under the logo, creating a third col-
umn. To make room for it, it was necessary to decrease the width of
the content-secondary div from 25 percent to 20 percent, decrease
the width of the content-main div from 70 percent to 58 percent,
and add a left margin to content-main.

N ot e : Opera 10.6

has a strange bug that

makes the navigation

div disappear when

you first expand the

window past 1200 pixels.

When you hover over

the area where it should

be, it shows up. There’s

no workaround for this

right now; hopefully the

Opera team will fix this

bug soon.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Changing the Layout for Large Screens 211

Let’s also change the widths of the about and credits divs in the footer
to match the widths of the columns above them. Add their IDs onto
the #content-main and #content-secondary rules in the media query:

#content-main, #about {
	 width: 58%;
	 margin-left: 18%;
}
#content-secondary, #credits { width: 20%; }

Now all the page elements are better positioned to work well in the
width available (Figure 6.3). Save your page, and view it in an up-to-
date browser. Resize your window to see how the layout automatically
changes when you get past 1200 pixels wide.

F i g u r e 6 . 3 The elements of the page now make better use of the space in wide windows.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 6: Di fferent Screen Size, Different Design212

The lowdown on media queries

Media queries are described in a module of the same name, found at www.w3.org/TR/css3-

mediaqueries. They let you customize styles based not only on media type, such as screen

and print, but also on characteristics of the user’s display, such as viewport width. These char-

acteristics, called media features, are listed at www.w3.org/TR/css3-mediaqueries/#media1; not all

browsers that support media queries support all of them.

A media query can be written within a style sheet, using the @media rule, followed by the media

type and one or more media features. Media queries can also be written onto link elements and

@import rules, omitting the @media rule.

You can include more than one media feature in a single media query, such as @media screen

and (min-width:320px) and (max-width:480px). You can also include more than one media

query in the same @media rule, separated by commas, such as @media screen and (color),

projection and (color), similar to a grouped selector.

You can write the word not at the start of a media query to apply its styles only when the media

query is not true, such as @media not print and (max-width:600px).

Other than changing layout at different screen sizes, you might want to use media queries for:

�� Adjusting text size and leading to keep text more readable at different line lengths; see

http://forabeautifulweb.com/blog/about/proportional_leading_with_css3_media_queries

�� Increasing text size of buttons, tabs, and links on mobile devices to make these elements easier

to activate with your finger on touch screens

�� Decreasing body-text size on small mobile screens since the user is effectively zoomed in, making

the text seem larger than on desktop screens

�� Revealing in-page links to jump to content down the page on small mobile screens

�� Swapping in higher resolution images on high-resolution devices, such as the iPhone 4;

see http://dryan.com/articles/posts/2010/6/25/hi-res-mobile-css-iphone-4 as well as the example

later in this chapter

�� Swapping in differently sized images for different viewport sizes

�� Applying different print styles for different sizes of paper

Ta b l e 6 .1   Media queries browser support

IE Firefox Opera Safari Chrome

Partial, 9+ Partial, 3.5+ Partial Partial Partial

I’ve listed all of these browsers as having partial support because they don’t support all the available media
features. The details for each browser are too long and, well, detailed to cover here; however, all listed
browsers support most of the media features, including the ones you are most likely to use regularly.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Changing the Layout for Large Screens 213

From Horizontal Nav Bar to Vertical Menu

Although everything is now in the place we want it, some of the page
elements could use further cosmetic updates. For instance, the li ele-
ments in the nav-main div are floated and have left margins in order
to align them all horizontally and space them out from each other,
but this keeps them from stacking on top of each other, only one to a
line, as we want in a vertical menu. They also have slightly rounded
top corners, which looks good when they’re horizontal, but not when
they’re sitting right on top of each other. We no longer need these
styles now that we’re styling the links as a vertical menu, so we’ll over-
ride them with new styles within the media query:

#nav-main li {
	 float: none;
	 margin: 0;
}
#nav-main a {
	 -moz-border-radius: 0;
	 -webkit-border-radius: 0;
	 border-radius: 0;
}

Now each link is on its own line and takes up the full width of the
menu (Figure 6.4).

Next, let’s apply some styling to the menu as a whole to make it look
more similar to the email newsletter box on the other side of the
page, which has a semitransparent background, slightly rounded cor-
ners, and a soft drop shadow:

#nav-main {
	 position: fixed;
	 top: 136px;
	 width: 13%;
	 margin: 0;
	 -moz-box-shadow: 0 0 8px hsla(0,0%,0%,.1);
	 -webkit-box-shadow: 0 0 8px hsla(0,0%,0%,.1);
	 box-shadow: 0 0 8px hsla(0,0%,0%,.1);
	 -moz-border-radius: 3px;
	 -webkit-border-radius: 3px;
	 border-radius: 3px;
	 background: hsla(0,0%,100%,.3);
	 text-align: right;
}

F i g u r e 6 . 4 Each link
now takes up the full
width of the menu.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 6: Di fferent Screen Size, Different Design214

Since the menu has its own background color now, tone down the
semitransparent gradients on the links within it, so that the two col-
ors layered over each other don’t get too opaque:

#nav-main a {
	 -moz-border-radius: 0;
	 -webkit-border-radius: 0;
	 border-radius: 0;
	 background: -moz-linear-gradient(hsla(0,0%,100%,.3),
	 ¬ hsla(0,0%,100%,0) 15px);
	 background: -webkit-gradient(linear, 0 0, 0 15,
	 ¬ from(hsla(0,0%,100%,.3)), to(hsla(0,0%,100%,0)));
}
#nav-main a:hover {
	 background: -moz-linear-gradient(hsla(0,0%,100%,.6),
	 ¬ hsla(0,0%,100%,.2) 15px);
	 background: -webkit-gradient(linear, 0 0, 0 15,
	 ¬ from(hsla(0,0%,100%,.6)), to(hsla(0,0%,100%,.2)));
}

These changes complete the navigation’s transformation from hori-
zontal bar to vertical menu (Figure 6.5).

Multi-column Text

One of the main complaints people have with layouts that adjust to
viewport width is that the length of lines of text can become either
too short or too long to be read comfortably or look attractive. Some
of this fear of “non-standard” line lengths is based on assumption
and myth. In reality, there is no magic line length that is ideal for
everyone; a person’s age, reading level, native language, disability, and
other factors all influence which line length he finds easiest to read.

However, it’s true that line lengths on the extreme ends of the range
don’t work well for the majority of readers and don’t always look very
attractive. One way that we can now control line lengths is with the
new multi-column properties in CSS3. These properties allow you
to flow the content of a single HTML element into multiple columns,
similar to a newspaper layout.

You create the columns using either the column-count or column-
width properties; in the latter case, the browser will decide how many
columns to make based on the available space. (You can also use both
properties together, though you may get unexpected results; see “The
lowdown on multi-columns” for more information.)

F i g u r e 6 . 5 The menu
in the left column
has been restyled to
resemble the newsletter
subscription box in the
right column.

N ot e : You can learn

more about line length

in Chapter 1 of Flexible

Web Design, which you

can download for free at

www.flexiblewebbook.

com/bonus.html.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Changing the Layout for Large Screens 215

Let’s break the introductory paragraph into two columns in both the
regular layout and the wide layout. Find the existing h1 + p rule in
the styles outside of the media query; it should be on line 102, about
a third of the way down the style element. Add the column-count
property, plus the three browser-specific versions, to the rule:

h1 + p {
	 -moz-column-count: 2;
	 -o-column-count: 2;
	 -webkit-column-count: 2;
	 column-count: 2;
	 color: #7F4627;
	 text-shadow: -1px -1px 0 hsla(0,0%,100%,.6);
	 font-size: 120%;
}

Right now, no browser supports the non-prefixed column-count
property, and Opera doesn’t do anything with the -o-column-count
property since it doesn’t yet support multi-columns, but it’s wise to
include both for future compatibility.

The property tells supporting Mozilla- and Webkit-based browsers
that you want to break the paragraph into two column-boxes. These
column boxes are not actual elements in the document tree of the
HTML, rather just virtual boxes that the browser creates to flow the
content of the paragraph into. The paragraph is now what the W3C
calls a multicol element—it’s a container for a multiple-column layout.

You can control the space between the columns using the column-gap
property. Set it to 1.5 ems in the h1 + p rule:

h1 + p {
	 -moz-column-count: 2;
	 -moz-column-gap: 1.5em;
	 -o-column-count: 2;
	 -o-column-gap: 1.5em;
	 -webkit-column-count: 2;
	 -webkit-column-gap: 1.5em;
	 column-count: 2;
	 column-gap: 1.5em;
	 color: #7F4627;
	 text-shadow: -1px -1px 0 hsla(0,0%,100%,.6);
	 font-size: 120%;
}

If you don’t set a column-gap value, each individual browser decides
how much space to add by default, so it’s best to standardize it by

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 6: Di fferent Screen Size, Different Design216

explicitly setting the value you want. Here, we’ve used a value in ems
so that the gap will grow larger as the text grows larger, keeping the
text more readable.

Now the introductory paragraph is broken into two columns in both
the regular layout and the wide layout created with the media query
(Figure 6.6). This completes all the styling for the wide version of the
bakery page (Figure 6.7).

F i g u r e 6 . 6 The text
of the introductory
paragraph flows into
two columns in Firefox,
Safari, and Chrome.

F i g u r e 6 .7

The completed design
for wide viewports

N ot e : The page with

all the changes to this

point is named media-

queries_1.html in the

exercise files for this

chapter.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Changing the Layout for Large Screens 217

P r o b l e m s w i t h m u lt i - co lu m n s

Although CSS3 multi-columns work well for the introductory paragraph
in our bakery page, there are a number of problems with them that
limit their usefulness, which you should be aware of before you use the
feature. Some of these problems are technical in nature, so as the W3C
refines the specification and browsers fix bugs and improve support,
they should disappear or at least lessen. These problems include:

�� Balancing column heights. If there’s not enough content to fill
each column equally, the browser has to decide which column gets
the extra height. Different browsers choose differently, with some-
times unexpected results.

�� Flowing margin, padding, and borders across columns. Webkit-
based browsers allow margin, padding, and borders to be split
across columns, creating a very strange appearance.

�� Breaking content across columns. Being able to control where
content breaks across columns is important, as you want to be able
to ensure that a heading stays with its associated text, for instance.
The column-break properties control this, but no browser sup-
ports them now.

�� Overflowing columns or content. Browsers are currently incon-
sistent about how to handle overflow when not all of the content
or columns can fit in the container (the multicol element); it may
overflow to the right or below, or just be truncated. An individual
piece of content that is too large to fit in a column box, such as an
image that is wider than the column width, is supposed to be cut
off in the middle of the column gap, but Firefox lets it overflow
and Webkit cuts it off at the edge of the column, not within the
gutter as the spec dictates.

�� Floating content within columns. Floats within a multicol ele-
ment are supposed to be positioned relative to the column box in
which they appear. Firefox does this; Webkit, strangely, puts the
float outside of the multicol element entirely.

�� Pagination when printed. When a multicol element has to break
across two or more pages when printed, the columns are not sup-
posed to break across the pages. The content should run through the
columns on the first page, then run through the columns on the sec-
ond page, and so on. Older versions of Webkit-based browsers didn’t
follow this; current versions simply make the content go back to a
single column when printed, avoiding the issue entirely.

N ot e : For a demo of

the first two problems

in this list, see http://

zomigi.com/blog/deal-

breaker-problems-with-

css3-multi-columns.

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Chapter 6: Di fferent Screen Size, Different Design218

But some problems with multi-columns are more inherent to the idea
of columns on the web to begin with. Having to scroll down to read
a column and then back up to read the next column, over and over
again, is just plain annoying and tiresome. This isn’t a technical prob-
lem—it’s a usability problem with breaking up content that’s taller
than a constrained screen. Treating the web like print often doesn’t
work well. For more on the usability and design problems inherent to
CSS3 multi-columns, see “Multicolumn layout considered harmful”
by Roger Johanssen (www.456bereastreet.com/archive/200509/css3_
multicolumn_layout_considered_harmful), “More on multi-column
layouts” by Richard Rutter (www.clagnut.com/blog/1590), and “CSS3
Multi-Column Thriller” by Andy Clarke (www.stuffandnonsense.
co.uk/archives/css3_multi-column_thriller.html).

Because of all of these problems, I strongly recommend only using
multiple columns in a limited manner. I think they’re fine for a cou-
ple paragraphs or a list, for instance. I don’t think they work very well
for long blocks of body copy or content that is complex, with several
paragraphs, types of elements, or images within it. Just keep this in
mind, and use multi-columns wisely.

Wo r k a r o u n d s fo r N o n - s u p p o rt i n g B r ows e r s

Multi-columns are a quintessential progressive enhancement tech-
nique, since browsers that don’t support the multi-column properties
simply see the text as it started out—in one column.

If you must provide a workaround for non-supporting browsers,
there are several scripts that can flow content into multiple columns.
The CSS3 Multi Column script by Cédric Savarese (www.csscripting.
com/css-multi-column) is a nice one because it reads the multi-
column properties already in your CSS and makes them work in non-
supporting browsers. You may also want to check out:

�� Columnizer jQuery plugin, by Adam Wulf
(http://welcome.totheinter.net/columnizer-jquery-plugin)

�� MooColumns MooTools class, by Jason J. Jaeger
(http://greengeckodesign.com/moocolumns)

�� Multi-column script, by Randy Simons
(http://randysimons.nl/125,english/129,multi-column-text)

�� Column script, by Michael van Ouwerkerk
(http://13thparallel.com/archive/column-script)

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

Changing the Layout for Large Screens 219

The lowdown on multi-columns

Multi-columns are described in the Multi-column Layout module found at

www.w3.org/TR/css3-multicol. They’re created using either the column-

count or column-width properties (or both). You can set both using the

columns shorthand property, but Firefox doesn’t yet support it.

The column-width property lets the browser decide how many

columns to make based on the space available. The value you set in

column-width is actually more like a minimum width; for instance, if

you set column-width to 100 pixels inside a 250-pixel-wide container,

and you set the column-gap to zero, the browser will make two col-

umns that are both 125 pixels wide.

The column-count property allows you to set the number of columns

explicitly, with their widths determined by the space available. If you set

both column-count and column-width, the column-count value acts

as a maximum number of columns. For instance, in the same 250-pixel-

wide container, if you set column-width to 100 pixels and column-

count to 3, the browser will not make three columns but only two.

You can use the column-gap property to create spaces between the col-

umns, and the column-rule property to create a vertical line within each

gap as a visual separator. The column-span property allows elements to

span across multiple columns, but is not yet supported by any browser.

The break-before, break-after, and break-inside properties con-

trol where content is broken across columns, but they are not yet sup-

ported by any browser.

Other than breaking short pieces of body text into multiple columns,

as we’ve done in this chapter, I think the only safe use for multi-columns

currently is to break a single list of short items into multiple columns;

see http://trentwalton.com/2010/07/19/css3-multi-column-layout-

column-count for an example.

Ta b l e 6 . 2   Multi-columns browser support

IE Firefox Opera Safari Chrome

No Partial No Partial Partial

Excerpted from Stunning CSS3: A project-based guide to the latest in CSS by Zoe Gillenwater.
Copyright © 2011. Used with permission of Pearson Education, Inc. and New Riders.

